

Status of MODIS and VIIRS Instruments

Xiaoxiong (Jack) Xiong

Sciences and Exploration Directorate, NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Acknowledgements:

MODIS Characterization Support Team (MCST) VIIRS Characterization Support Team (VCST)

Outline

- Introduction
 - MODIS and VIIRS Instruments
 - Calibration Approaches
- MODIS and S-NPP VIIRS On-orbit Performance
- MODIS L1B and S-NPP VIIRS SDR (L1B)
- Summary

Introduction

MODIS on Terra and Aqua Missions

- Terra: Dec. 18, 1999 - Present

Aqua: May 04, 2002 – Present

VIIRS on S-NPP and JPSS Missions

S-NPP: Oct. 28, 2011 – Present

JPSS-1: launch in Jan 2017

JPSS-2: launch in July 2021

MODIS On-orbit Calibration Methodologies

Terra and Aqua MODIS On-orbit Performance

- SD degradation: wavelength-dependent (larger at shorter wavelength; faster with more solar exposure)
- BB stability: excellent (more stable in Aqua)
- Changes in detector responses
 - Large changes in VIS and NIR (strong wavelength and AOI dependent)
 - Small changes in SWIR, MWIR, and LWIR
- Changes in responses versus scan-angle (RVS): RSB only
- Changes in polarization characteristics (primarily in Terra VIS bands): science impact
- Spatial and spectral: stable through entire missions
- Terra safe hold event (2/18/16)
 - Nominal operation resumed
 - Additional noisy detectors (21 of the 26 noisy detectors since launch are in LWIR PV bands; 11 of the 21 occurred after safe hold event)

S-NPP VIIRS On-orbit Performance

- SD degradation: similar to Terra MODIS
- BB stability: similar to Aqua MODIS
- Changes in detector responses
 - Large changes in NIR and SWIR (due to mirror contamination)
 - Small changes in VIS, MWIR, and LWIR
- Changes in responses versus scan-angle (RVS): small
 - Monitored using EV data at different AOI
- Spatial performance: stable through entire mission
 - Tracked using lunar observations (no SRCA)
- Spectral performance: modulated RSR
 - VIIRS unique feature
 - Mirror contamination => wavelength dependent optics degradation

Aqua MODIS VIS/NIR Radiometric Responses

Similar λ , AOI, and mirror side dependence for Terra MODIS VIS and NIR responses

MODIS SWIR, MWIR, and LWIR Radiometric Responses

MODIS VIS/NIR Spatial Characterization Performance

Terra BBR: within spec (±0.1 km) for all band pairs (except for along scan B30 and B32)

Aqua BBR: a known issue since pre-launch

MODIS VIS/NIR Spectral Characterization Performance

CW and BW changes are within 0.5 nm and 1.0 nm, respectively, for most VIS/NIR bands Relatively large changes are observed for bands with broad bandwidths (bands 1, 18, 19)

MODIS and VIIRS SD Degradation

SD degradation monitored by the on-board SDSM

MODIS and VIIRS show similar wavelength dependent SD degradation

- Terra MODIS: SD door kept at open since 2003 (1999-present)
- Aqua MODIS: SD door opens only during SD/SDM calibration (2002-present)
- S-NPP VIIRS: no SD door (2011 to present)

VIIRS RSB Spectral Band Responses (from SD calibration)

SD and lunar calibration at the same AOI Small difference between SD and lunar calibration observed for a few bands SD long-term trends normalized to lunar trends in latest calibration LUTs

Large changes in NIR/SWIR responses due

to telescope mirror degradation
on-orbit

12

modulated RSR

VIIRS TEB Spectral Band Responses (from BB calibration)

Excellent stability: less than 0.5-1% over 4+ years (similar to Aqua MODIS)

MODIS has more TEB with wavelengths up to 14.5 μm

S-NPP VIIRS On-orbit Modulated RSR

λ dependent optics degradation led to Modulated RSR

Small impact on bands with narrow bandwidths and small OOB responses; large impact on DNB (broad bandwidth)

Status of MODIS Level 1B Data Products (C6)

- Collection 6 (C6) L1B products released to public July 2012 for Aqua and Nov 2012 for Terra
- C6 L1B data can be downloaded from:

http://ladsweb.nascom.nasa.gov/

- New improvements since C6 release
 - ✓ Correction applied to reduce Terra B5 (and potentially other SWIR bands) long-term drift as SDSM can only track SD degradation in VIS and NIR region
 - ✓ Forward updates of Aqua TEB nonlinear calibration coefficient (a2)
 - ✓ Improved use of default gains for bands 33, 34, and 36 during BB WUCD.
 - ✓ More bands included the earth view trending at different AOIs for RVS characterization (Terra band 10 added; Aqua bands 1-4 pending science team approval)
 - ✓ Polarization corrected trending for RVS characterization (under science evaluation by land team)
 - ✓ Terra PV LWIR electronic crosstalk correction (pending science team review)

Status of S-NPP VIIRS SDR (NASA SIPS Support)

Land SIPS SDR reprocess using IDPS Code with VCST LUTs (C1.0 and C1.1)

- IDPS SDR/EDR codes Mx based version with LUTs input from VCST
- 35 sets of LUTs for RSB (and DNB) have been delivered to Land SIPS for data reprocessing and SDR/EDR assessments in Collections 1.0 and 1.1.

Collection	Code base	# of LUTs	Delivery Time (year.month)	Improvements	
C1.0	Mx6.3	5	2012.10 - 2013.01	Smoothed functions for SD degradation H-factor and calibration coefficients F-factor.	
	Mx6.4	5	2013.04 - 2013.11	Updated SD/SDSM screen transmission, SD BRDF, RTA mirrors degradation model, and modulated RSRs.	
C1.1	Mx7.2	25	2013.12 - 2016.02	Improved time-dependent modulated RSR, DNB stray light correction, H & F fitting functions.	

Atmosphere SIPS SDR reprocess using IDPS Code with VCST LUTs

- Mission data reprocessing VIIRS SDR/EDR using Mx8.4 software in late 2014.
- 9 sets of LUTs based on Mx8.4 code format have been delivered (Nov 2014 –
 Feb 2016) same quality LUTs as those sent to Land C1.1.

Status of S-NPP VIIRS L1B (NASA SIPS Support)

NASA SIPS L1B/LUTs for mission reprocess (V1.1.0)

- VIIRS L1A and L1B software/LUT and data design are developed under NASA EDOS/SIPS.
- SNPP VIIRS LO data as the input for L1A software => 6-min L1A HDF5 data.
- L1A and L1B calibration LUTs are the input for L1B software => Geolocation and L1B products including OBC.
- First L1B software V1.1.0 was released in Jan 2016 for SIPS evaluation.
- LUTs generations are based on corrected solar vector (error fix), on-orbit SD/SDSM screen transmission & SD BRDF, modulated RSR, and consistent fitting of mission data.

Collection	Code base	# of LUTs	Delivery Time (year.month)	Note
V1.1.0	L1B V1.1.0	2	2016.02 - 2016.03	Redesigned L1B software and LUTs format using input from NASA L1A data. L1B products are under evaluation.

Status of JPSS-1 VIIRS Calibration and Characterization

Pre-launch Calibration and Characterization:

- Sensor level testing
 - ✓ Ambient: 08/24/2013 01/19/2014
 - ✓ Pre-TVAC: 05/16/2014 07/16/2014
 - ✓ TVAC: 07/16/2014 10/30/2014
 - ✓ Post-TVAC: 11/24/2014 12/15/2014 (PSR completed in Feb 2015)
- Observatory level testing:
 - ✓ TVAC testing: June, 2016

Preparation for On-orbit Calibration (led by NOAA SDR team)

- LUTs development for SDR processing
 - ✓ "at launch" quality LUTs delivered in Dec 2015 (except for a few DNB LUTs to be developed after SC TVAC testing)

Launch in Jan 2017

- Intensive calibration and validation (ICV)
- NASA effort similar to S-NPP VIIRS (TBR) Impact to CERES?

Status of JPSS-2 VIIRS Calibration and Characterization

Sensor Pre-launch Calibration and Characterization:

- Ambient Test Readiness Review (TRR): 03/24/2016
- Ambient phase: April-June 2016 (Started April 6th)
 - Key performance testing: RVS, NFR, SLR, SNR, Crosstalk, Polarization, RSR
- Thermal vacuum: February-August 2017
 - Key performance testing: Radiometric calibration, SNR, RSR, stability
- Pre-Ship Review (PSR): October 2017

Launch in July 2021

Summary

- Both Terra and Aqua MODIS continue to operate normally with all onboard calibrators capable of performing their design functions
- Changes in sensor responses (radiometric, spatial, and spectral) have been regularly monitored and corrections have been made to maintain data quality (via calibration LUTs – reprocessing/forward updates)
- Key challenging issues (RVS, polarization, crosstalk, noisy detectors) identified and characterized and mitigation plans developed for future improvements (C6 and beyond)
- S-NPP VIIRS overall performance has been satisfactory (mirror contamination induced optical degradation has significantly leveled off; modulated RSR derived and applied)
- Dedicated effort by VCST has been made in support of NASA PEATE/SIPS for generating consistent and research quality SDR/L1B and EDR
- J1 VIIRS SDR and EDR support for CERES needs to be addressed

POC:

- MODIS and VIIRS: Jack Xiong < xiaoxiong.xiong-1@nasa.gov>
- MODIS: Amit Angal <amit.angal@ssaihq.com>
- VIIRS (S-NPP) Vincent Chiang kwofu.chiang@ssaihq.com
- VIIRS (JPSS) Hassan Oudrari hassan.oudrari-1@nasa.gov

Backup Slides

Key Design Requirements of MODIS Spectral Bands

Primary Use	Band	Bandwidth (nm)	Spectral Radiance ¹	Required SNR	Primary Use	Band	Bandwidth (mm)	Spectral Radiance ¹	Required NEDT(K)
Land/Cloud/Aerosols	1	620 - 670	21.8	128	Surface/Cloud Temperature	20	3.660 - 3.840	0.45 (300K)	0.05
Boundaries	2	841 - 876	24.7	201		21	3.929 - 3.989	2.38 (335K)	0.2
	3	459 - 479	35.3	243		22	3.929 - 3.989	0.67 (300K)	0.07
	4	545 - 565	29	228		23	4.020 - 4.080	0.79 (300K)	0.07
Land/Cloud/Aerosols Properties	5	1230 - 1250	5.4	74	Atmospheric Temperature	24	4.433 - 4.498	0.17 (250K)	0.25
	6	1628 - 1652	7.3	275		25	4.482 - 4.549	0.59 (275K)	0.25
	7	2105 - 2155	1	110	Cirrus Clouds Water Vapor	26	1.360 - 1.390	6	150 (SNR)
	8	405 - 420	44.9	880		27	6.535 - 6.895	1.16 (240K)	0.25
	9	438 - 448	41.9	838		28	7.175 - 7.475	2.18 (250K)	0.25
	10	483 - 493	32.1	802	Cloud Properties	29	8.400 - 8.700	9.58 (300K)	0.05
Ocean Color/	11	526 - 536	27.9	754	Ozone	30	9.580 - 9.880	3.69 (250K)	0.25
Phytoplankton/	12	546 - 556	21	750	Surface/Cloud Temperature	31	10.780 - 11.280	9.55 (300K)	0.05
Biogeochemistry	13	662 - 672	9.5	910		32	11.770 - 12.270	8.94 (300K)	0.05
	14	673 - 683	8.7	1087	Cloud Top Altitude	33	13.185 - 13.485	4.52 (260K)	0.25
	15	743 - 753	10.2	586		34	13.485 - 13.785	3.76 (250K)	0.25
	16	862 - 877	6.2	516		35	13.785 - 14.085	3.11 (240K)	0.25
	17	890 - 920	10	167		36	14.085 - 14.385	2.08 (220K)	0.35
Atmospheric Water Vapor	18	931 - 941	3.6	57	¹ Spectral Radiance values are (W/m ² -µm-sr)				
-	19	915 - 965	15	250					

VIIRS (and MODIS) Spectral Bands

	,				
VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR
DNB	0.500 - 0.900				
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
M3	0.479 0.409	750	3 10	0.459 - 0.479	500
IVIO	0.478 - 0.498	750	3 10	0.483 - 0.493	1000
M4	0.545 - 0.565	750	4 or 12	0.545 - 0.565	500
141-4	0.545 - 0.505			0.546 - 0.556	1000
I 1	0.600 - 0.680	375	1	0.620 - 0.670	250
M5	0.662 - 0.682	750	13 or 14	0.662 - 0.672	1000
				0.673 - 0.683	1000
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000
12	0.846 - 0.885	375	2	0.841 - 0.876	250
			16 or 2	0.862 - 0.877	1000
M7	0.846 - 0.885	750	10 01 2	0.841 - 0.876	250
M8	1.230 - 1.250	750	5	SAME	500
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000
13	1.580 - 1.640	375	6	1.628 - 1.652	500
M10	1.580 - 1.640	750	6	1.628 - 1.652	500
M11	2.225 - 2.275	750	7	2.105 - 2.155	500
14	3.550 - 3.930	375	20	3.660 - 3.840	1000
M12	3.660 - 3.840	750	20	SAME	1000
				3.929 - 3.989	1000
M13	3.973 - 4.128	750	21 or 22	3.929 - 3.989	1000
M14	8.400 - 8.700	750	29	SAME	1000
				10.780 - 11.280	1000
M15	10.263 - 11.263	750	31	10.700 - 11.280	1000
15	10 500 10 100	375	31 or 32	10.780 - 11.280	1000
	10.500 - 12.400			11.770 - 12.270	1000
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000

1 DNB: L/M/HG 32 Agg. Modes

14 RSB: 0.41-2.3 μm

M1-M5, M7, and M13

7 DGB:

7 TEB: 3.7-12.1 μm

VIIRS On-orbit Calibration Methodologies

Stability Monitor

VIIRS on-orbit operation and calibration are based on the experience and lessons from MODIS

Solar Diffuser

Extended SV Port

